[Probability] Gaussian Process
Mathematics/Probability, Statistics, Information

[Probability] Gaussian Process

๐Ÿชด Task

ํ•˜๋‚˜์˜ ํ•จ์ˆ˜์—์„œ ๋‚˜์˜ค๋Š”  context dataset ์ด ๋‹ค์Œ๊ณผ ๊ฐ™์ด ์ฃผ์–ด์ ธ์žˆ์„ ๋•Œ Context:{(x1,y1),(x2,y2),...,(xc,yc)} ์ด ์ฃผ์–ด์กŒ์„ ๋•Œ Target:x1โˆ—,x2โˆ—,...,xtโˆ—์˜ y๊ฐ’์„ ์˜ˆ์ธกํ•˜๋Š” ๋ฐฉ๋ฒ•

 

๐Ÿชด Gaussian Process

Gaussian Process์—์„œ๋Š” ์˜ˆ์ธก๊ฐ’์„ Normal distribution์œผ๋กœ, distribution over target ๊ฐ’๋“ค์„ ๋‚˜ํƒ€๋‚ธ๋‹ค. ์ฆ‰, y^1โˆ—โˆผN(ฮผy1โˆ—,ฯƒy1โˆ—) y^2โˆ—โˆผN(ฮผy2โˆ—,ฯƒy2โˆ—) ... y^tโˆ—โˆผN(ฮผytโˆ—,ฯƒytโˆ—)

  • Define probability distributions over functions, generalise from observed data.

๐Ÿชด Methodology

Gaussian process์—์„œ๋Š” y*์— ๋Œ€ํ•œ ์˜ˆ์ธก๊ฐ’์„ ๋‹ค์Œ๊ณผ ๊ฐ™์ด ์ •์˜ํ•œ๋‹ค.

yโˆ—|yโˆผN(Kโˆ—Kโˆ’1y,Kโˆ—โˆ—โˆ’Kโˆ—Kโˆ’1Kโˆ—T) ์˜ ๋ถ„ํฌ๋ฅผ ๊ฐ€์ง€๋ฉฐ, ์—ฌ๊ธฐ์— ์ •์˜๋˜๋Š” K, K_*, K_**๋Š” ๋‹ค์Œ์— ์ •์˜๋œ k๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ๊ณ„์‚ฐ๋œ๋‹ค. ์ด๋“ค์€ context dataset๋“ค์˜ x๊ฐ’ ๊ฐ„์˜ ๊ด€๊ณ„๋ฅผ ํ†ตํ•ด ์ด๋ฅผ ์œ ์ถ”ํ•ด๋‚ด๊ณ ์ž ํ•œ๋‹ค. ์ด ๋•Œ ์‹œ๊ทธ๋งˆ ๊ฐ’๋“ค์€ ํ•˜์ดํผ ํŒŒ๋ผ๋ฏธํ„ฐ์— ์†ํ•œ๋‹ค.

k(x,xโ€ฒ)=ฯƒf2exp(โˆ’(xโˆ’xโ€ฒ)22l2)+ฯƒn2ฮด(x,xโ€ฒ)์„ ๋ฐ”ํƒ•์œผ๋กœ, 

ํ–‰๋ ฌ ๊ณ„์‚ฐ์„ ํ†ตํ•ด y*๊ฐ’์„ ์œ ์ถ”ํ•ด๋‚ธ๋‹ค. ์ด ๋•Œ, computation complexity์ธ big0๋ฅผ ์œ ์ถ”ํ•ด๋ณด์ž๋ฉด,

Kโˆ’1โˆผO(C3),Kโˆ—Kโˆ’1โˆผO(Tร—C2)์ด๋ฏ€๋กœ findingE(yโˆ—)โˆผO(C3+Tร—C2)