AI skeletons
- Supervised model
- Self-supervised model
- Unsupervised model
- Generative models
- Autoregressive models
- RNN & Transformer language models, NADE, PixelCNN, WaveNet
- Latent variable models
- Tractable: e.g. invertible / flow-based models (RealNVP, Glow, etc.)
- Intractable: e.g. Markov Chain Monte Carlo, Variational Autoencoders series
- Implicit models
- Generative Adversarial Networks (GANs) and variants
- Autoregressive models
- Generative models
Methodology concepts
'AI, Deep Learning Basics > Basic' 카테고리의 다른 글
[AI602] AdvancedML Introduction (0) | 2022.09.11 |
---|---|
[Logger] wandb 사용법 (0) | 2022.05.05 |
[Basic] Probabilistic model (0) | 2022.03.11 |
[Logger] TensorboardX 사용하기 (0) | 2022.02.19 |
Training tip 정리 (0) | 2022.02.16 |