이 글은 필자가 Pieter Abbeel 의 Deep Unsupervised Learning 2020을 듣고 정리한 글입니다.
Goal: Think the intuition of perceptions for robot. How will I lead my research on this perspective?
Contents
- Intro
- Autoregressive Models 2h 28m
- Flow Models 1h 57m
- Latent Variable Models 2h 20m
- Implicit Models / Generative Adversarial Networks 2h 33m
- Self-Supervised Learning / Non-Generative Representation Learning 2h 10m
- Strengths and Weaknesses of Unsupervised Learning Methods Covered Thus Far 2h 21m
- Semi-Supervised Learning; Unsupervised Distribution Alignment 42m
- Compression 3h 10m
- Language Models 2h 39m
- Representation Learning in Reinforcement Learning 2h 2m
'Robotics & Perception > Unsupervised Learning' 카테고리의 다른 글
[CS294 Pieter Abbeel] 5. Implicit Models - GANs (0) | 2022.04.21 |
---|---|
[CS294 Pieter Abbeel] 4. Latent Variable Models - Variational AutoEncoder (VAE) (0) | 2022.04.21 |
[CS294 Pieter Abbeel] 3. Likelihood Models: Flow Models (0) | 2022.04.21 |
[CS294 Pieter Abbeel] 2. Likelihood Models: Autoregressive Models (0) | 2022.04.21 |
[CS294 Pieter Abbeel] 1. Intro (0) | 2022.04.19 |