1. Bayesian Machine Learning
- Posterior inference
2. Bayesian Deep Learning
- How: Variational inference
- Markov Chain Monte Carlo (MCMC) Sampling
- Bayes by Backprop
3. Bayesian Approximation
4. Appolication) Meta-learning: Neural Processes
'AI, Deep Learning Basics > Basic' 카테고리의 다른 글
Training Tips for the Transformer Model (0) | 2022.11.05 |
---|---|
Training on GPU, CPU (0) | 2022.11.05 |
[AI602] 2. Self-supervised Learning (0) | 2022.10.01 |
[AI602] 1. Vision Transformer (0) | 2022.09.11 |
[AI602] AdvancedML Introduction (0) | 2022.09.11 |