mask-rcnn
.circleci configuration of the environment to run
- config.yml: environments to run the jobs in
.github arrangement on the github environment
- ISSUE_TEMPLATE
- workflows
- CODE_OF_CONDUCT.md
- CONTRIBUTING.md
- ISSUE_TEMPLATE.md
- pull_request_template.md
build options that is built on my macosx environment
- lib.macosx-10.9-x86_64-3.7
configs structure of the whole model(-common-models-mask_rcnn_fpn.py, Base-RCNN-FPN.yaml)
- Cityscapes ~ PascalVOC-Detection configuration of each dataset mask-rcnn
- Cityscapes
- COCO-Detection
- COCO-InstanceSegmentation
- COCO-Keypoints
- COCO-PanopticSegmentation
- Detectron1-Comparisons
- LVISv0.5-InstanceSegmentation
- LVISv1-InstanceSegmentation
- Misc
- new_baselines
- PascalVOC-Detection
- quick_schedules
- common
- data options about dataloader
- models → mask_rcnn_fpn.py structure of the whole model
- Base-RCNN-FPN.yaml & other yaml files
- Base-RCNN-C4.yaml
- Base-RCNN-DilatedC5.yaml
- Base-RCNN-FPN.yaml
- Base-RetinaNet.yaml
- Cityscapes ~ PascalVOC-Detection configuration of each dataset mask-rcnn
datasets structure of datasets(json, train, test)
- prepare_ade20k_sem_seg.py
- prepare_cocofied_lvis.py
- prepare_for_tests.sh
- prepare_panoptic_fpn.py
- README.md
demo Run model by cfg
- demo.py
- predictor.py
- README.md
detectron2
- checkpoint don't know the usage
- Checkpointer
- PreiodicCheckpointer
- DetectionCheckpointer
- config
- cfgNode
- get_cfg
- global_cfg
- set_global_cfg
- downgrade_config
- configurable
- instantiate
- LazyCall
- LazyConfig
- data
- checkpoint don't know the usage
engine
evaluation
export
layers
model_zoo
modeling
backbone FPN
- backbone.py
- Backbone abstract base class for network backbone
- build.py: build_backbone
- fpn.py
- FPN(Backbone)
- → build_resnet_fpn_backbone
- → build_retinanet_resnet_fpn_backbone
- FPN(Backbone)
- regnet.py
- AnyNet, RegNet, ResStem, SimpleStem, VanillaBlock, ResBasicBlock, ResBottleneckBlock
- resnet.py
- ResNetBlockBase, BasicBlock, BottleneckBlock, BasicStem, ResNet, make_stage, build_resnet_backbone
- backbone.py
meta_arch meta-architectures of the whole model GeneralizedRCNN
- build.py
- build_model: build the whole model architecture
- dense_detector.py
- DenseDetector: base class for dense detector ( a dense detector as a fully-convolutional model that makes per-pixel prediction) → FCOS
- fcos.py
- → FCOS(DenseDetector), FCOSHead(RetinaNetHead): Fully convolutional One-stage object detection
- panoptic_fpn.py
- PanopticFPN(GeneralizedRCNN)
- rcnn.py GeneralizedRCNN, ProposalNetworks
- GeneralizedRCNN
- Per-image feature extraction (aka backbone): backbone
- Region proposal generation: proposal_generator
- Per-region feature extraction and prediction: roi_heads
- ProposalNetwork: a meta architecture that only predicts object proposals
- GeneralizedRCNN
- retinanet.py
- semantic_seg.py
- build.py
proposal_generator StandardRPNHead, RPN
- build.py
- build_proposal_generator
- proposal_utils.py
- find_top_rpn_proposals for each feature map, select the 'pre_nms_topk' highest scoring proposals, apply NMS, clip proposals, and remove small boxes. return the 'post_nms_topk' highest scoring proposals among all the feature maps for each image.
- add_ground_truth_to_proposals_single_image
- → add_ground_truth_to_proposals
- rpn.py StandardRPNHead
- build_rpn_head.py
- StandardRPNHead standard RPN classification and regression heads described in FasterRCNN
- RPN Region Proposal Network, introduced by Faster RCNN
- rrpn.py
- find_top_rrpn_proposals
- RRPN(RPN)
- build.py
roi_heads StandardROIHeads FastRCNNConvFCHead FastRCNNOutputLayers MaskRCNNConvUpsampleHead
roi_heads.py StandardROIHeads
- build_roi_heads
- ROIHeads
- (in training only) match proposals with ground truth and sample them
- crop the regions and extract per-region features using proposals
- make per-region predictions with different heads
- Res5RoIHeads(ROIHeads)
- StandardROIHeads(ROIHeads)
- select_foreground_proposals return a list of instances that contain only instances with gt_classes ≠ -1 & gt_classes ≠ bg_label
- select_proposals_with_visible_keypoints
box_heads.py FastRCNNConvFCHead
- build_box_head
- FastRCNNConvFCHead a head with several 3x3 conv layers and then several fc layers
cascade_rcnn.py
- CascadeROIHeads(StandardROIHeads)
fast_rcnn.py FastRCNNOutputLayers
fast_rcnn_inference Call 'fast_rcnn_inference_single_image' for all images
_log_classification_stats log the classification metrics to EvnetStorage
FastRCNNOutputLayers
Two linear layers for predicting Fast R-CNN outputs
- proposal-to-detection box regression deltas
- classification scores
keypoint_head.py
- build_keypoint_head
- keypoint_rcnn_loss
- keypoint_rcnn_inference
- BaseKeypointRCNNHead
- KRCNNConvDeconvUpsampleHead
mask_head.py mask_rcnn_loss, MaskRCNNConvUpsampleHead
- build_mask_head
- mask_rcnn_loss
- mask_rcnn_inference
- BaseMaskRCNNHead implement the basic mask R-CNN losses and inference logic
- MaskRCNNConvUpsampleHead(BaseMaskRCNNHead)
roatated_fast_rcnn.py
- fast_rcnn_inference_rotated
- fast_rcnn_inference_single_image_rotated
- RotatedFastRCNNOutputLayers
- RROIHeads
anchor_generator.py
- build_anchor_generator
- _create_grid_offsets
- _broadcast_params
- DefaultAnchorGenerator Compute anchors in the standard ways described in Faster R-CNN
- RotatedAnchorGenerator
box_regression.py Box2BoxTransform
- Box2BoxTransform box-to-box transform defined in R-CNN
- Box2BoxTransformRotated
- Box2BoxTransformLinear
matcher.py Matcher
- Matcher assigns to each predicted element a ground truth element → returns a vector of length N containing the index of the ground-truth element m in [0, M) that matches to predictions in [0, N), a vector of length N containing the labels for each predictions
mmdet_wrapper.py
- MMDetBackbone
- MMDetDetector
- _convert_mmdet_result
- parselosses
poolers.py
- assign_boxes_to_levels
- convert_boxes_to_pooler_format
- ROIPooler ROI feature map pooler that supports pooling from one or more feature maps
postprocessing.py detector_postprocess
- detector_postprocess resize the output instances
- sem_seg_postprocess
sampling.py
- subsample_labels return num_samples(random samples from labels which is a mixture of positives and negatives
test_time_augmentation.py
- DatasetMapperTTA
- GeneralizedRCNNWithTTA
projects → went to projects file
solver LR scheduler 정의하기
- init.py
- build.py
- lr_scheduler.py
structures
- boxes.py
- BoxMode: different ways to represent a box
- Boxes: a list of boxes as a Nx4 tensor
- calculate IoU
- Image_list.py
- ImageList: structure that holds a list of images as a single tensor
- instances.py
- Instances: a list of instances (boxes, masks, labels, scores) in an image
- keypoints.py
- Keypoints: keypoint annotation data (x,y location and visibility flag of each keypoint)
- masks.py
- BitMasks: segmentation masks for all objects in one image, in the form of bitmap(NxHxW)
- PolygonMasks: segmentation masks for all objects in one image, in the form of polygon(float64 vector)
- RoIMasks: Represent masks by N smaller masks defined in some ROIs. Once ROI boxes are given,
full-image bitmask can be obtained by "pasting" the mask on the region defined by the corresponding ROI box.
- rotated_boxes.py
- RotatedBoxes: a list of rotated boxes as a Nx5(+angle) tensor
- boxes.py
utils
- analysis.py
- collect_env.py
- colormap.py
- comm.py
- env.py
- events.py
- file_io.py
- logger.py
- memory.py
- README.md
- registry.py
- serialize.py
- testing.py
- video_visualizer.py
- visualizer.py
init.py
detectron2.egg-info detectron2 information(PKG-INFO etc.)
- dependency_links.txt, PKG-INFO, requires.txt, SOURCES.txt, top_level.txt
dev scripts for develops to use (GPU, log, commit)
- packaging
- linter.sh
- parse_results.sh
- README.md
- run_inference_tests.sh
- run_instant_tests.sh
docker docker
- deploy.Dockerfile
- docker-compose.yml
- Dockerfile
- README.md
docs documentation built for this directory
- _static
- modules
- notes
- tutorials
output output(config, log history) of the trained model
- config.yaml config file of this detectron2 model
- log.txt log history of the training procedure
projects few projects that are built on detectron2
- DeepLab
- DensePose
- Panoptic-DeepLab
- PointRend
- PointSup
- Rethinking-BatchNorm
- TensorMask
- TridentNet
tools Train network(train_net.py, plain_train_net.py) / visualize data results / analyze model
- deploy
- init.py
- analyze_model.py analyze model(flop, activation, parameter, structure)
- benchmark.py a script to benchmark builtin models
- convert-torchvision-to-d2.py
- lazyconfig_train_net.py training script using the new "LazyConfig" python config files
- lightning_train_net.py beta version
- plain_train_net.py training script with a plain training loop, fewer default features but an example to how to use the library
- README.md
- train_net.py main training script
- visualize_data.py
- visualize_json_results.py
tests file for testing, but more simple than detectron2. help to set detectron2 model
- config
- dir1
- root_cfg.py
- test_instantiate_config.py
- test_lazy_config.py
- test_yacs_config.py
- data
- init.py
- test_coco.py
- test_coco_evaluation.py
- test_dataset.py
- test_detection_utils.py
- test_rotation_transform.py
- test_sampler.py
- test_transforms.py
- layers
- init.py
- test_blocks.py
- test_deformable.py
- test_losses.py
- test_mask_ops.py
- test_nms.py
- test_nms_rotated.py
- test_roi_align.py
- test_roi_align_rotated.py
- modeling
- init.py
- test_anchor_generator.py
- test_backbone.py
- test_box2box_transform.py
- test_fast_rcnn.py
- test_matcher.py
- test_mmdet.py
- test_model_e2e.py
- test_roi_heads.py
- test_roi_pooler.py
- test_rpn.py
- structures
- init.py
- test_boxes.py
- test_imagelist.py
- test_instances.py
- test_keypoints.py
- test_masks.py
- test_rotated_boxes.py
- config
'AI, Deep Learning Basics > Computer Vision' 카테고리의 다른 글
[Generative Model] Variational AutoEncoder 1. Basic: AE, DAE, VAE (0) | 2021.12.06 |
---|---|
[Computer Vision] Image, Video 분야 subtask 및 데이터 종류 정리 (0) | 2021.12.01 |
[Basic] 3x3 Conv, 1x1 Conv 하는 이유(FCN vs. FC Layer vs. FPN) (0) | 2021.11.20 |
[톺아보기] Pytorch를 이용한 Image Classifier 코드, Gradient Descent (0) | 2021.10.26 |
[논문리뷰] Everybody Dance Now (0) | 2021.04.24 |